

EQUIVALENCE RELATIONS

A relation \sim on a set S is **reflexive** if

$$a \sim a \text{ for all } a \in S.$$

A relation \sim on a set S is **symmetric** if

$$a \sim b \text{ implies } b \sim a \text{ for all } a, b \in S.$$

A relation \sim on a set S is **transitive** if

$$a \sim b \text{ and } b \sim c \text{ implies } a \sim c \text{ for all } a, b, c \in S.$$

A relation \sim on a set S is an **equivalence relation** if \sim is (1) reflexive, (2) symmetric, and (3) transitive.

Example 1. For any set S , $a \sim b$ means $a = b$.

Example 2. $S = \mathbb{Z}$, n is a fixed positive integer,

$$a \sim b \text{ means } a \equiv b \pmod{n}.$$

Example 3. $S = \mathbb{R}$,

$$x \sim y \text{ means } x - y \text{ is an integer.}$$

Example 4. Consider the set of all triangles in \mathbb{R}^2 . For any two triangles T and S in the plane, define $T \sim S$ to mean that T is congruent to S in the usual geometric sense.

Which of the following are equivalence relations? If not an equivalence relation, which of the three axioms (reflexivity, symmetry, transitivity) hold?

Example 5. In the set \mathbb{Z}^+ , let $x \sim y$ mean x divides y .

Example 6. $S = \mathbb{Z}$,

$$a \sim b \text{ means } (a, b) = 1.$$

Example 7. In the set \mathbb{R} , let $x \sim y$ mean $x - y$ is a rational.

Example 8. In the set \mathbb{R} , let $x \sim y$ mean $|x| = |y|$.

Example 9. In the set \mathbb{R} , let $x \sim y$ mean $x \leq y$.

Example 10. In the set \mathbb{R} , let $x \sim y$ mean $|x - y| \leq 1$.

Example 11. In the set X , let $x \sim y$ hold for all $x, y \in X$.

Example 12. In the set $\mathbb{Z} \times \mathbb{Z} - \{0\}$, let $(a, b) \sim (c, d)$ mean $ad = bc$.

Example 13. In the set \mathbb{R}^2 , let $P \sim Q$ mean that points P and Q lie on the same line through the origin.

Example 14. In the set \mathbb{R}^2 , let $P \sim Q$ mean that points P and Q lie on the same vertical line.

Example 15. In the set \mathbb{R}^2 , let $P \sim Q$ mean that points P and Q lie on the same line.

Example 16. In the set \mathbb{R}^2 , let $(a, b) \sim (c, d)$ mean $a^2 + b^2 = c^2 + d^2$.

Example 17. For the set of all triangles in \mathbb{R}^2 , let $T \sim S$ mean that T is similar to S in the usual geometric sense.

Example 18. For the set of all subsets of \mathbb{R} , let $A \sim B$ mean that $A \cap B = \emptyset$.

Example 19. For the set of all subsets of \mathbb{R} , let $A \sim B$ mean that $A \subseteq B$.

Proposition. Suppose \sim is a transitive relation on a set S . If $x_1 \sim x_2, x_2 \sim x_3, \dots, x_{n-1} \sim x_n$, then $x_1 \sim x_n$.

Example 20. For the set of all people on earth, let $P_1 \sim P_2$ mean that P_1 looks like P_2 .

Example 21. For the set of all people on earth, let $P_1 \sim P_2$ mean that P_1 has the same biological parents as P_2 .

Example 22. For the set of all functions $f : \mathbb{R} \rightarrow \mathbb{R}$, let $f \sim g$ mean that f and g differ by a constant, that is, there is some constant c such that $f(x) = g(x) + c$ for all $x \in \mathbb{R}$.

Example 23. For the set of all functions $f : \mathbb{R} \rightarrow \mathbb{R}$, let $f \sim g$ mean that f is a constant multiple of g , that is, there is some constant k such that $f(x) = k \cdot g(x)$ for all $x \in \mathbb{R}$.

Example 24. For the set of all differentiable functions $f : \mathbb{R} \rightarrow \mathbb{R}$, let $f \sim g$ mean that $f' = g'$, where ' denotes the derivative.

Question 25. Here is a “proof” that symmetry and transitivity imply reflexivity:

Suppose \sim is symmetric and reflexive on a set S . By symmetry we have $x \sim y$ implies $y \sim x$ and by transitivity, we can deduce from $x \sim y$ and $y \sim x$ that $x \sim x$, thereby establishing reflexivity.

What, if anything, is wrong with this proof?

Example 26. For the set of all subsets of \mathbb{R} , let $A \sim B$ mean that $A \subsetneq B$ or $B \subsetneq A$. Show that \sim is symmetric and transitive. Is it reflexive?

Example 27. Given a function $f : X \rightarrow Y$ and define $a \sim b$ to mean $f(a) = f(b)$.

EQUIVALENCE CLASSES

If \sim is an equivalence relation on a set S , then define the **equivalence class** $[a]$ to be the set $\{b \in S : a \sim b\}$.

Theorem. Let \sim be an equivalence relation on the set S . Then for any two equivalence classes $[a]$ and $[b]$,

$$\begin{cases} [a] = [b] & \text{if } a \sim b \\ [a] \cap [b] = \emptyset & \text{if } a \not\sim b \end{cases}.$$

In particular, if we define S/\sim , the **factor set** of the equivalence relation \sim , to be

$$S/\sim \stackrel{\text{def}}{=} \{[a] : a \in S\},$$

then the theorem above states that any two equivalence classes are either identical or disjoint. Consequently, S can be partitioned into disjoint equivalence classes in S/\sim .

For example, \mathbb{Z} is the disjoint union of the equivalence classes $[0]_3$, $[1]_3$, and $[2]_3$.

Exercise. Describe in as simple way as possible the equivalence classes of the preceding examples which turned out to be equivalence relations.

Theorem (from book). If $f : S \rightarrow T$ is any function, let \sim be the equivalence relation defined on S by letting $x_1 \sim x_2$ if $f(x_1) = f(x_2)$, for all $x_1, x_2 \in S$. Then there is a one-to-one correspondence between the elements of the image $f(S)$ of S under f and the equivalence classes in the factor set S/\sim .

Example. [The last name function.] Let \mathcal{P} denote the set of people on earth and let \mathcal{N} denote the set of all possible names. Let $L : \mathcal{P} \rightarrow \mathcal{N}$ be the function defined by $L(P) =$ the last name of person P . (We have to restrict people with one name, such as Cher, from our domain \mathcal{P} .) We will get lots of last names, such as Smith, Jones, and Pickleheimer. Two people are related by \sim if they have the same last name. The above theorem states there is a one-to-one correspondence:

Name	Equivalence Class
Smith	$\leftrightarrow \{\text{people named Smith}\}$
Jones	$\leftrightarrow \{\text{people named Jones}\}$
Pickleheimer	$\leftrightarrow \{\text{people named Pickleheimer}\}$

Example. [The remainder function mod 3.] Let $R : \mathbb{Z} \rightarrow \{0, 1, 2\}$ be the function defined by $R(n) =$ the remainder on dividing n by 3. The above theorem states there is a one-to-one correspondence:

Remainder	Equivalence Class
0	$\leftrightarrow \{\dots, -6, -3, 0, 3, 6, 9, \dots\}$
1	$\leftrightarrow \{\dots, -5, -2, 1, 4, 7, 10, \dots\}$
2	$\leftrightarrow \{\dots, -4, -1, 2, 5, 8, 11, \dots\}$

That is, each remainder $r = 0, 1, 2$ is associated with the congruence classe $[r]_3$.