

Math 308: Bridge to Advanced Mathematics
Set notation, due in class on Tuesday, April 9.

Work on these problems and write down your thoughts, **even if you do not have a complete solution**. Write **clearly** enough for another student in this course, or for yourself in a year, to understand your work.

1. Playing with changing the order of set operations.

- (a) Let $A := \{7, 8\}$. Evaluate $A \times ((A \cup A) \cup A) \times A$ and $(A \times A) \cup [(A \cup A) \times A]$.
- (b) Let $A := \{\heartsuit\}$. Evaluate $A \times ((A \cup A) \cup A) \times A$ and $(A \times A) \cup [(A \cup A) \times A]$.
- (c) Add parentheses to the expression

$$A \times A \cup A \cup A \times A$$

in a new way, so that for $A := \{7, 8\}$ you get a set that is different from the ones in part (a).

- (d) Is there a way to add parentheses to the expression

$$A \times A \cup A \cup A \times A$$

to get a new set when $A := \{\heartsuit\}$?

2. Is $\emptyset = \emptyset \times \emptyset$?
3. Let $X := \{a, 3, \star\}$. Write down the eight elements of $\mathcal{P}(X)$.
4. In this problem, x and y are real numbers; and X, S, A, B , and E are sets of real numbers.

- (a) Explain in words the following property of a set X :

$$\exists x \in X \forall y \in X x \leq y.$$

- (b) Write down the negation of the property in part (a).
- (c) Suppose that $S \subseteq \mathbb{N}$ has the property in part (b); show that $1 \notin S$.
- (d) Find a set $E \subseteq \mathbb{N}$ that has the property in part (b).
- (e) Use strong induction to prove that any $S \subseteq \mathbb{N}$ that has the property in part (b) is equal to the set E you found in part (d).
- (f) Find sets $B \subseteq A$ such that A has the property in part (a) and B has the property in part (b).
- (g) Use generalized induction to prove that there are no subsets A and B of integers such that $B \subseteq A$ and A has the property in part (a) and B has the property in part (b).

5. Consider the set

$$S := \{I \subseteq \mathbb{R} : \forall x \in I \forall y \in \mathbb{R} \forall z \in I \text{ if } x \leq y \leq z, \text{ then } y \in I\}.$$

- (a) Give four examples of sets of real numbers that are elements of S .
- (b) Give four examples of sets of real numbers that are not elements of S .
- (c) What are elements of S called in calculus books?