Math 32404: Advanced Calculus II Reading exercises 2, due on Thursday, February 15th.

Read sections 14-17 in our textbook, including the exercises in the textbook, and solve the exercises below as you go along. Your solutions will not be collected, but a very short in-class quiz on the due date will contain one of these exercises, or one very very similar to it.

- 1. For what real numbers a does the sequence $s_n := a^n$ converge? (Try a = 0, 1 1, 2, -2, 1/2, -1/2 if you are not sure how to start.)
- 2. For what real numbers a is the sequence $s_n := a^n$ monotone?
- 3. For what real numbers a is the sequence $s_n := a^n$ bounded?
- 4. For what real number a does the sequence $s_n := a^n$ have a convergent subsequence even though it does not converge? What are the limits of its convergent subsequences?
- 5. For what real numbers a does the sequence $t_n := (\sin an, \cos an)$ converge?
- 6. For what real numbers a is the sequence $t_n := (\sin an, \cos an)$ bounded?
- 7. For what real numbers a does the sequence $t_n := (\sin an, \cos an)$ have a convergent subsequence even though it does not converge? What are the limits of these convergent subsequences?
- 8. Fix p, let A be a subset of \mathbb{R}^p , and let (u_n) be a convergent sequence in \mathbb{R}^n such that $u_n \in A$ for every n. Prove that the limit u of this sequence is an interior point of A or a boundary point of A.
- 9. Fix p, let A be a closed subset of \mathbb{R}^p , and let (u_n) be a convergent sequence in \mathbb{R}^n such that $u_n \in A$ for every n. Prove that the limit u of this sequence lies in A.
- 10. Fix p, let A be a compact subset of \mathbb{R}^p , and let (u_n) be a sequence in \mathbb{R}^n such that $u_n \in A$ for every n. Prove that there exists a convergent subsequence of (u_n) whose limit lies in A.
- 11. Note that the set V_p of all sequences in \mathbb{R}^p is a vector space. Find an infinite linearly independent subset of V_2 .
- 12. Find a sequence of functions (g_n) from \mathbb{R}^2 to \mathbb{R}^2 which converges to a constant function on all of \mathbb{R}^2 , but is not uniformly convergent on \mathbb{R}^2 .