

Math A4400: Mathematical Logic

5th problem set, due at 2pm on wednesday, october 16th.

Bring your solutions class, or slide them under the door of my office NAC 6278.

1. Let S be the signature with two binary function symbols P and M . Let \mathcal{A} be the S -structure with universe $A := \mathbb{R}$, with $M^{\mathcal{A}}(a, b) := a \cdot b$, and $P^{\mathcal{A}}(a, b) := a + b$. Let \mathcal{B} be the S -substructure of \mathcal{A} with universe $B := \mathbb{Q}$. Describe all S -homomorphisms between these two structures, in both directions, and prove that your list includes all of them.
2. Let S and \mathcal{A} be as in problem 1. Let α be the \mathcal{A} -assignment given by $\alpha(v_n) := 2^n$. Describe $\{t^{\mathcal{A}}[\alpha] \mid t \text{ is an } S\text{-term}\}$. As usual, prove your answer.
3. Let S be a signature, and let \mathcal{A} be an S -structure. Let E be an equivalence relation on the universe A of \mathcal{A} , and let $\pi : A \rightarrow A/E$ be the usual surjection from A to the set of E -equivalence classes.
 - (a) Find the necessary and sufficient conditions for there to be an S -structure \mathcal{B} with universe A/E such that $\pi : \mathcal{A} \rightarrow \mathcal{B}$ is a positive S -homomorphism (see Remark 2.3.27 in our book; this is what "homomorphism" was defined to mean in lecture).
 - (b) Find the necessary and sufficient conditions for π above to be an S -homomorphism in the sense of Definition 2.3.26 in our book.
 - (c) Let S be the signature with one binary function symbol M and one binary relation symbol D . Let \mathcal{A} be the S -structure with universe $A := \mathbb{Q} \setminus \{0\}$, with $M^{\mathcal{A}}(a, b) := a \cdot b$, and with $D^{\mathcal{A}} := \{(a, b) \mid a \text{ divides } b\}$. Let $E := \{(a, b) \mid b = c^2a \text{ for some } c \in \mathbb{Q}\}$. Describe the quotient structure \mathcal{B} . Is π a homomorphism?
4. Ask an interesting question about this week's material and try to answer it. This question is as serious as the rest of them!

bonus Let S be a signature with one unary function symbol f , and let S' be a signature with one binary relation symbol R . For any S -structure \mathcal{A} , define the *associated S' -structure* \mathcal{A}' by $A' := A$ and

$$R^{\mathcal{A}'} := \{(a, b) \in A^2 \mid f^{\mathcal{A}}(a) = b\}$$

Is every S' -structure associated to some S -structure? If $g : A \rightarrow B$ is an S -homomorphism between S -structures \mathcal{A} and \mathcal{B} , does it follow that g is also an S' -homomorphism between the associated S' -structures? Is the converse of the last statement true?