

Math A4400: Mathematical Logic

6th problem set, due at 2pm on wednesday, october 23nd.

Bring your solutions class, or slide them under the door of my office NAC 6278.

1. Suppose that X , Y , and Z are symbols in a signature S .
 - (a) Could both XYZ and XZY be S -formulas? If so, what kinds of symbols would X , Y and Z have to be?
 - (b) Could both XYZ and ZYX be S -terms? If so, what kinds of symbols would X , Y and Z have to be?

List all possibilities and carefully prove your answers.

2. Let S be a signature with one binary function symbol F and no other symbols. Let $\phi := \forall x Fxy \dot{=} x$ and $\psi := \forall y Fxy \dot{=} x$ be two S -formulas. Consider the following three S -structures with universe \mathbb{Z} :

- $F^T(a, b) := a \cdot b$;
- $F^P(a, b) := a + b$;
- $F^F(a, b) := a$.

For each of the six possible combinations of formula and structure, describe the set of assignments that satisfy that formula in that structure.

3. Let S be a signature, x a variable, and τ an S -term. Prove or refute the following.
 - (a) If t is another S -term, and t' is the expression obtained by replacing every instance of x in t with τ , then t' is also an S -term.
 - (b) If α is an S -formula, and β is the expression obtained by replacing every instance of x in α with τ , then β is also an S -formula.
4. Ask an interesting question about this week's material and try to answer it. This question is as serious as the rest of them!

Bonus Let S be the signature with two binary function symbols $+$ and \times and two constant symbols 0 and 1 . Let \mathcal{N} be the S -structure with universe \mathbb{N} and the usual interpretations of the symbols of S .

- (a) Show that for every natural number n , there is an S -term \dot{n} with no variables such that $\dot{n} \stackrel{\mathcal{N}}{=} [\alpha] = n$ for any \mathcal{N} -assignment α .
- (b) Suppose that \mathcal{A} is another S -structure, and suppose that for any atomic S -formula ϕ with no variables, any \mathcal{A} -assignment α , and any \mathcal{N} -assignment ν , $\models_{\mathcal{A}} \phi[\alpha]$ if and only if $\models_{\mathcal{N}} \phi[\nu]$. Show that there exists a unique S -embedding from \mathcal{N} to \mathcal{A} .