
Math A4400: Mathematical Logic
Final Project, relying on Section 2.6.

Read Section 2.6 and these two pages, and think about each of the questions 1-15 for 5-10 minutes.
Classify questions 1-15 as too boring, too hard, or just right for you; with at least 5 “just right.”

Solve as many of the not-too-boring, not-too-hard parts as you can by Tuesday, May 10th.
Come to class on Tuesday May 10th, or send your preferences (boring/hard/just right) to someone

who will: we will assign parts to people. Solve all parts assigned to you by Tuesday May 17th.

1 introduction

The goal is to prove the Compactness Theorem of First Order Logic:

Theorem 1.1. Every finitely satisfiable set of first-order sentences is satisfiable.

Definition 1.1. A set S of L-sentences is called finitely satisfiable if for any finite subset S0 ⊂ S there is
an L-structure satisfying all formulae in S0.

We start with a first-order language L0 and a finitely satisfiable set S0 of L0-sentences; we grow the
language to Lω by adding many new constant symbols, and grow the set S0 to Σ with two extra properties:
still finitely satisfiable, Σ is also complete, and has constant witnesses. We then build an Lω-structre U out
of the constants of Lω, and show that it satisfies all sentences in Σ. Then the reduct of U to L0 satisfies all
sentences in S, and we are done.

2 the project

1. Given a first-order language L and a finitely satisfiable set T of L-sentences, let L′ be a new language
with lots of extra constant symbols, and T ′ be a set of L′-sentences as follows:

L′ := L ∪ {Cφ | φ(x) is an L-formula }

T ′ := T ∪ {(∃xφ)→ φ(Cφ) | φ(x) is an L-formula }

Show that T ′ is finitely satisfiable.

2. Given a first-order language L0 and a finitely satisfiable set S0 of L0-sentences, use the definitions
above to define Ln and Sn inductively as follows:

Ln+1 := L′
n and Sn+1 := S′

n

Let
Lω := ∪n∈NLn and Sω := ∪n∈NSn

(a) Show that for all n, Sn is finitely satisfiable.

(b) Show that Sω is finitely satisfiable.

(c) Show that for any Lω-formula φ(x), there is a constant symbol Cφ in Lω such that the sentence
(∃xφ)→ φ(Cφ) is in Sω.

Definition 2.1. A set T of L-sentences is said to have constant witnesses if for every L-formula φ
there is a constant symbol Cφ in L such that the sentence (∃xφ)→ φ(Cφ) is in T .

3. (a) Suppose that you have countably many symbols; show that there are only countable many finite
strings of these symbols. Conclude that if a first-order language L has countably many non-logical
symbols, then there are countably many L-formulae.
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(b) Show that if there are countably many symbols in L, and countably many formulae in L, then
there are countably many formulae in L′ defined above.

(c) Given countable first-order languages Ln for n ∈ N such that Li ⊂ Lj for all i ≤ j, show that
∪n∈NLn is countable. Conlude that Lω defined above has countably many formulae.

4. Show that if a set T of L-sentences is finitely satisfiable, and θ is an L-sentence, then either T ∪{θ} or
T ∪ {¬θ} is fintely satisfiable.

5. Show that if a set Sω of Lω-sentences is finitely satisfiable, then there exists a finitely satisfiable set Σ
of Lω-sentences such that Sω ⊂ Σ and for every Lω-sentence θ, either θ ∈ Σ or ¬θ ∈ Σ.

Definition 2.2. A set T of L-sentences is called complete is for every L-sentence θ, either θ ∈ T or
¬θ ∈ T .

6. So, we now have a set of Lω-sentences Σ ⊃ S, which is complete, finitely satisfiable, and has constant
witnesses.

Definition 2.3. An L-sentence ψ is a semantic consequence of a set Σ of L-sentences if every L-
structure A that satisfied all sentences in Σ also satisfies ψ.

7. Suppose that a set T of L-sentences is complete and finitely satisfiable, and that an L-sentence ψ is a
semantic consequence of a finite subset of T ; show that ψ ∈ T .

8. Suppose that a set T of L-sentences is complete and finitely satisfiable; define two constant symbols C
and D to be T -equivalent if the sentence C = D is in T . Show that this is an equivalence relation.

9. Suppose that a set T of L-sentences is complete and finitely satisfiable; show that if Ci is T -equivalent
to Di for all i ≤ n, and R is an n-ary relation symbol in L, then the sentence R(C1, . . . Cn) is in T if
and only if the sentence R(D1, . . . Dn) is in T .

10. Suppose that a set T of L-sentences is complete and finitely satisfiable, and has constant witnesses.
Show that for any constant symbols Ci in L and any n-ary function symbol f in L, there is a constant
symbol C in L such that the sentence f(C1, . . . Cn) = C is in T .

11. Suppose that a set T of L-sentences is complete and finitely satisfiable; Ci is T -equivalent to Di for all
i ≤ n; f is an n-ary function symbol in L; and sentences f(C1, . . . Cn) = C and f(D1, . . . Dn) = D are
in T ; show that C is T -equivalent to D.

12. We now construct an Lω-structure U as follows: the universe U will consist of Σ-equivalence classes
uC of Lω constant symbols C; we interpret Lω as follows:

• for a constant symbol C, we let CU := uC

• for an n-ary relation symbol R,

RU := {(uC1
, uC2

, . . . , uCn
) | R(C1, C2, . . . Cn) ∈ Σ}

• for an n-ary function symbol f and an n-tuple (uC1 , uC2 , . . . , uCn) of elements in U , we let
fU (uC1

, uC2
, . . . , uCn

) := uC for some constant symbol C in Lω such that f(C1, C2, . . . Cn) = C
is in Σ.

Verify that the functions fU are well-defined.

13. Suppose that a set T of L-sentences is complete and finitely satisfiable, and that the L-sentence ∀xφ(x)
is in T , and that C is a constant symbol in L. Show that the L-sentence φ(C) is in T .

14. Show that U satisfies Σ. Hint: induct on the complexity of a sentence θ to show that U |= θ if and only
if θ ∈ Σ. Further hint: use the fact that Σ has constant witnesses to deal with the quantifier indcution
step.

15. Yay, we are done!
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