

Math A4400: Mathematical Logic

Problem set 4, due at 2pm on thursday, march 15th.
Solutions turned in after 2:05pm are late and get half credit.

This problem set is about sections 2.3 of Mathematical Logic
Lecture Notes by van den Dries.

1. Let S be a signature with a unary function symbol $+$, a binary function symbol 1 , a 17-ary relation symbol $<$, and no other symbols.
 - (a) Give an example of an S -structure with an infinite universe.
 - (b) Give an example of an S -structure with a finite universe.
2. Let S be a signature with one binary function symbol f and no other symbols.
 - (a) List the 16 S -structures with universe $\{\mathbb{U}, \infty\}$.
 - (b) Which of the 16 S -structures in part (a) are groups under the interpretation of f ? Identify the identity element in each of those.
3. Let S be the signature of rings: two binary function symbols $+$ and \cdot , a unary function symbol $-$, and two constant symbols 0 and 1 . How many S -structures with universe $\{1, 2, a, X\}$ are there?
4. Consider four signatures $S_i \subset \{P, T, N, Z, W\}$, with P and T binary function symbols, N a unary function symbol, and Z and W constant symbols:

$$S_1 := \{P, T\}, \quad S_2 := \{P, T, N\}, \quad S_3 := \{T, N\}, \quad S_4 := \{P, T, N, W\}.$$

For each i , let \mathcal{A}_i be the S_i -structure with universe \mathbb{Z} and the following interpretations of symbols in S_i :

$$\begin{aligned} P^{\mathcal{A}_i}(x, y) &= x + y, & T^{\mathcal{A}_i}(x, y) &= xy, & N^{\mathcal{A}_i}(x) &:= -x, \\ Z^{\mathcal{A}_i} &:= 0, & W^{\mathcal{A}_i} &:= 1. \end{aligned}$$

For each i , describe all S_i -substructures of \mathcal{A}_i .

* Let S be a signature with one binary function symbol $*$. Let \mathcal{A} be the S -structure with universe \mathbb{Z} and with $*^{\mathcal{A}}(x, y) := x + y$ for all integers x, y . Let \mathcal{B} be the S -structure with universe $\mathbb{Q}^{>0}$ (the set of all positive rational numbers) and $*^{\mathcal{B}}(x, y) := x \cdot y$ for all rational x, y . Is \mathcal{A} an S -substructure of \mathcal{B} ? Describe all S -homomorphisms between these two structures.