

Math A4400: Mathematical Logic
Problem set 6, due at 2pm on tuesday, march 29th.
Solutions turned in after 2:05pm are late and get half credit.

This problem set is about section 2.4 of Mathematical Logic Lecture Notes by van den Dries.

The terms that our textbook calls “variable-free” are usually called “closed.”

1. Let S be a signature with one 5-ary function symbol f , and let t be the S -term $fv_1v_2v_1v_3v_1$. Describe an S -structure \mathcal{A} and elements $a, b, c, d \in A$ such that

$$t(v_0, v_1, v_2, v_3)^{\mathcal{A}}(a, b, c, d) = t(v_0, v_1, v_2, v_3)^{\mathcal{A}}(a, c, b, d).$$

2. Fix a signature S , two S -structures \mathcal{A} and \mathcal{B} , an S -homomorphism ϕ from \mathcal{A} to \mathcal{B} , and an S -term t . Suppose that all variables of t are among v_0, v_1, \dots, v_n , and that $a_0, a_1, \dots, a_n \in A$.

- (a) Work through an example: specify $S, \mathcal{A}, \mathcal{B}$, and ϕ ; pick some t with at least two function symbols; and use the definition of interpretation of terms to compute the following quantities, writing down every step of the computation.

$$t(v_0, v_1, \dots, v_n)^{\mathcal{B}}(\phi(a_0), \phi(a_1), \dots, \phi(a_n))$$

$$\phi(t(v_0, v_1, \dots, v_n)^{\mathcal{A}}(a_0, a_1, \dots, a_n))$$

- (b) Prove that those two quantities are equal for any $S, \mathcal{A}, \mathcal{B}, \phi$, and closed term t . Write a careful, detailed proof by induction on terms.
- (c) Prove that for any $S, \mathcal{A}, \mathcal{B}, \phi, t, n$, and a_0, a_1, \dots, a_n as above, the two quantities computed in part (a) are equal. Write a careful, detailed proof by induction on terms.
3. Suppose that \mathcal{A} is an S -structure such that for every $a \in A$, there is a closed S -term t such that $t^{\mathcal{A}} = a$. Use Problem 2 to show that for any S -structure \mathcal{B} , there is at most one homomorphism from \mathcal{A} to \mathcal{B} .
4. Fix a signature S and an S -structure \mathcal{A} , and let

$$B := \{t^{\mathcal{A}} : t \text{ is a closed } S\text{-term}\} \subset A.$$

- (a) If S is the signature of rings and \mathcal{A} is your favourite non-commutative ring, what is B ?
- (b) Show that if B is non-empty, then it is the universe of the smallest S -substructure of \mathcal{A} .
5. Fix a signature S , an S -structure \mathcal{A} , and elements $a, b \in A$. Suppose that b belongs to every S -substructure of \mathcal{A} containing a . Show that there exists an S -term t with at most one variable v_0 such that

$$t(v_0)^{\mathcal{A}}(a) = b.$$

* Let S be the signature of ordered abelian groups (see textbook). Describe the S -structure \mathcal{A} such that for any S -structure \mathcal{B} , there is exactly one homomorphism from \mathcal{A} to \mathcal{B} .