

Math A4400: Mathematical Logic
Problem set 9, due at 2pm on tuesday, may 3rd.
Solutions turned in after 2:05pm are late and get half credit.

This problem set is about sections 2.4-2.5 of Mathematical Logic Lecture Notes by van den Dries.

1. Let $S := \{P, T\}$ be the signature with two binary function symbols. Consider the following S -structures.

- (a) \mathcal{A} with universe $A := \mathbb{Z}$ and $P^{\mathcal{A}}(a, b) := a + b$ and $T^{\mathcal{A}}(a, b) := ab$
- (b) \mathcal{B} with universe $B := \mathbb{Q}$ and $P^{\mathcal{B}}(a, b) := a + b$ and $T^{\mathcal{B}}(a, b) := ab$
- (c) \mathcal{C} with universe $C := \{\Delta\}$ and $P^{\mathcal{C}}(\Delta, \Delta) := \Delta$ and $T^{\mathcal{C}}(\Delta, \Delta) := \Delta$
- (d) \mathcal{D} with universe D consisting of all 2-by-2 matrices with real entries, and $P^{\mathcal{D}}(a, b) := a + b$ and $T^{\mathcal{D}}(a, b) := ab$
- (e) \mathcal{E} with universe $E := \{e \in \mathbb{Z} : e \geq 17\}$ and $P^{\mathcal{E}}(a, b) := a + b$ and $T^{\mathcal{E}}(a, b) := ab$
- (f) \mathcal{F} with universe $F := \mathbb{R}$ and $P^{\mathcal{F}}(a, b) := a + b$ and $T^{\mathcal{F}}(a, b) := ab$
- (g) \mathcal{G} with universe $G := \{\heartsuit, \diamondsuit\}$ and $P^{\mathcal{G}}(a, b) := \heartsuit$ and $T^{\mathcal{G}}(a, b) := \diamondsuit$ for all a, b
- (h) \mathcal{H} with universe $H := \{\heartsuit, \diamondsuit\}$ and
 $P^{\mathcal{H}}(\heartsuit, \heartsuit) = P^{\mathcal{H}}(\diamondsuit, \diamondsuit) := \heartsuit$ and $P^{\mathcal{H}}(\heartsuit, \diamondsuit) = P^{\mathcal{H}}(\diamondsuit, \heartsuit) := \diamondsuit$ and
 $T^{\mathcal{H}}(\heartsuit, \diamondsuit) := \diamondsuit$ and $T^{\mathcal{H}}(a, b) = \heartsuit$ for all other (a, b)

Separate as many of these as you can with as few S -sentences as you can. For example, \mathcal{C} is the only one of them that satisfies $\forall v_0 \forall v_1 = v_0 v_1$. In principle, it might be possible to separate all 8 structures with only 3 sentences.

2. Let $S := \{R\}$ be the signature with one binary relation symbol. Consider the following S -structures.

- (a) \mathcal{A} with universe $A := \mathbb{N}$ and $R^{\mathcal{A}} := \{(a, b) \in \mathbb{N}^2 : a \leq b\}$
- (b) \mathcal{B} with universe $B := \mathbb{N}$ and $R^{\mathcal{B}} := \{(a, b) \in \mathbb{N}^2 : a \geq b\}$
- (c) \mathcal{C} with universe $C := \mathbb{Q}$ and $R^{\mathcal{C}} := \{(a, b) \in \mathbb{Q}^2 : a \geq b\}$
- (d) \mathcal{D} with universe $D := \mathbb{Q}$ and $R^{\mathcal{D}} := \{(a, b) \in \mathbb{N}^2 : a \geq b\}$
- (e) \mathcal{E} with universe $E := \mathbb{R}$ and $R^{\mathcal{E}} := \{(a, b) \in \mathbb{R}^2 : a \geq b\}$
- (f) \mathcal{F} with universe $F := \mathbb{Z}$ and $R^{\mathcal{F}} := \{(a, a + 6) : a \in \mathbb{Z}\}$
- (g) \mathcal{G} with universe $G := \{\heartsuit, \diamondsuit\}$ and $R^{\mathcal{G}} := \{(\heartsuit, \diamondsuit)\}$
- (h) \mathcal{H} with universe $H := \{\heartsuit, \diamondsuit\}$ and $R^{\mathcal{H}} := H^2$

Separate as many of these as you can with as few S -sentences as you can.

3. Find a good signature S for vector spaces and explain how the symbols of S should be interpreted for a given vector space V to build the corresponding S -structure \mathcal{V} . Is the set of pairs of linearly independent vectors definable in your signature? Does the notion of S -substructures and S -homomorphisms correspond to subspaces and linear maps? Is there an S -sentence expressing the property “finite-dimensional”?